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Error Analysis of Algorithms for Evaluating

Bernstein- B6zier-Type Multivariate Polynomials

J. M. Pefia

Abstract. In Computer Aided Geometric Design, the Bernstein-B6zier
form is the usual way to store a polynomial defined on a triangle. We per-
form backward and forward error analysis of the de Casteljau algorithm
and of the algorithm proposed by Schumaker and Volk for evaluating such
polynomials. The obtained results are also compared with the correspond-
ing results for the bivariate Horner algorithm.

§1. Introduction

In Computer Aided Geometric Design, multivariate polynomials defined on a
triangle are usually stored in the Bernstein-Bdzier form, and can be evaluated
by the de Casteljau algorithm. In [8] a modified Bernstein-B6zier representa-
tion of polynomials was introduced, along with an algorithm for its evaluation,
which was called the VS algorithm. This algorithm for the evaluation of mul-
tivariate polynomials is expressed in terms of nested multiplications, and is
more efficient than the de Casteljau algorithm.

Error analysis of the de Casteljau algorithm for univariate polynomials
was considered in [2] and [4]. This paper is devoted to backward and forward
error analysis of the de Casteljau and VS algorithms for bivariate polynomi-
als. On the other hand, the error analysis of the Horner algorithm for the
evaluation of univariate polynomials has been extensively studied in the liter-
ature. In fact, backward and forward error analysis of (univariate) Horner's
rule was already performed by Wilkinson in [11], pp. 36-37 and 49-50. Other
approaches to this problem can be found in [5,9,10,12] (see more references in
[3]). An error analysis of the multivariate Horner algorithm has been given in
[7]. We also compare our results with those corresponding to the multivariate
Horner algorithm.

The paper is organized as follows. Section 2 introduces basic concepts,
notation, and auxiliary results. In Section 3 we carry out the mentioned
error analysis of the algorithms. Finally, we summarize in Section 4 the main
conclusions and the advantages of VS algorithm in this context, taking into
account computational cost and forward error analysis.
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§2. Basic Notations and Auxiliary Results

Let us now introduce some standard notation in error analysis. Given a C R,
the computed element in floating point arithmetic will be denoted by either
fl(a) or by &. As usual, to investigate the effect of rounding errors when
working with floating point arithmetic, we use the model

fl(aopb)=(aopb)(l+6), 161<u, (1)

with u the unit roundoff and op any of the elementary operations +, -, x, /
(see [3, p. 44] for more details). Given k E No such that ku < 1, let us define

ku
'Yk : =(2)"1 - ku"

In our error analysis we shall deal with quantities such that their absolute
value is bounded above by -Yk. Following [3], we denote such quantities by
Ok and take into account that by Lemmas 3.3 and 3.1 of [3], the following
properties hold:

(1 + Ok)(1 + Oj) = 1 + Ok+j, (3)

and ifpi = ±1, 16i] 1 :u (i = 1,...,k) then

k

IJ(l + 6i)P = 1 + Ok. (4)
i=1

In considering the computed solution of a problem, one can try to find the
data for which this computed solution is the exact solution. Backward error
analysis measures how far these data are from the original data of the prob-
lem. So, backward error analysis interprets rounding errors as perturbations
in the data. In contrast, forward error analysis measures how far the computed
solution is from the exact solution. Therefore, in our evaluation problem, if
f(x) = EnO Zo uii(x) is the computed evaluation (instead of the exact evalua-
tion f(x) = ]%o ciui (x)), we say that the relative backward error is bounded
above by E if

1ci, <E, n.

Then we can bound the forward error by

If(x) - f(x)I _• E E Z CiUi(X)I.
i=0

The number
n

C W):= E Ic ui(x), (5)
i=O

measures the stability in the evaluation of a function with respect to perturba-
tions of the coefficients, and is called the condition number for the evaluation of
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f(x) with the basis u (see [1,2,4,6,7]). Let us observe that Cu(f(x)) depends
on the basis u, on the function f, and on the point x. If we assume that the
basis is formed by nonnegative functions, (5) can be written as

n

C M(f(x)) = E Ici ui(x). (6)
i=O

In conclusion, we can bound the forward error by

If(x) - f(x)I _• EUc(f(x)), (7)

which is a particular case of the classical formula (Forward error) < (Backward
error) x (Condition number).

If we assume that f(x) 5 0 we can also define the relative condition
number by

C (f(x))c. (f W))= If(X)[

The following relative forward error bound, analogous to (7), can be derived:

If(x) - f(x)l < Cc (f W)
If(x)I

The following result (which was obtained for polynomials in [1]) allows
us to compare the condition number of two bases of nonnegative functions in
a space when they are related by a nonnegative matrix:

Lemma 1. Let U be a finite dimensional vector space of functions defined on
Q C R'. Let u = (uO,... ,U.), v = (vo,... ,vn) be two bases of nonnegative
functions of U such that

(v o , .. .,v n ) = (U 0 , . . ., u n )A ,

where A = (aj)o<_i,j:<n is a nonnegative matrix. Then C"(f(x)) • C" (f(x))

for each function f E U evaluated at every x e 92.

Proof: Given f E U, it can be written as

n

f(x) = Ecqvq(x) = cqaiq uj(X). (8)
q=O i=0 =

Then, by (8) and the nonnegativity of u, v and A, we deduce that

n n

C.(f(x)) = E I E(cqaiq)lIui(t)I
i=O q=O

n n

< 1EIcqlaiqui(x) = q I E aiqui(X) (9)
i=0 q=0 q=0 =

= Icql IVq(X)I = C q(((()))

q=0

for each function f E U evaluated at every x E Q. 0
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§3. Backward and Forward Error Analysis of the Algorithms

Given a triangle T with vertices P, Q, R in the plane and a point X E T, let
(r, s, t) be the barycentric coordinates of X:

X=rP+sQ+tR, r+s+t=l.

Let lid(T) space of polynomials of total degree d defined on T. Then any
polynomial p C lld(T) can be written as

d i d

p(r, s, t) = bd-i,i-J,j Bdi,iJJ(r s, t), (10)
i=O j=O

where

Bj,k (r, s,) t rjtk, i +j + k = d (11)2, ) = -!3!k!

are the Bernstein polynomials. Then (10) is called the Bernstein-B~zier repre-
sentation of p.

Let us now recall the algorithm of de Casteljau to evaluate the polynomial
p at a given (r, s, t). We denote by b9Jk : for all i + j + k = d.

Algorithm of de Casteljau

for k = 1 to d
for i = 0 to d- k

for j = 0 to i =k k - _ a k - 1
bd_--k,i-j,j= r'bd i-k+l,i-j,j +s'b-•i-k,i-j+l,j +t.bd-i-k,i-j,j+l

end j
end i

end k

The previous algorithm leads to the evaluation p(r, s, t) = bd, 0,0. It re-
quires d(d + 1)(d + 2)/2 multiplications.

The following result provides backward error analysis of the de Casteljau
algorithm for the evaluation of bivariate polynomials.

Theorem 2. Let us consider the algorithm of de Casteljau in (10) and let
us assume that 3du < 1. Then the computed value P(r, s, t) = fi(p(r, s, t))
satisfies

d i -d

P(r, s, t) = bd-i,i-jjBd-i,i-J(r' s, t), (12)
i=0 j=0

where
lbi,j,k - bi,j,kI < 7t3d. (13)

Ibi,j,kI -
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Proof: By (1), for each k E 1,...,d}

-•[lrk k~~~ij k-I k-1
S[fi(rbd&+1,i..j÷j) + fl(sbd-i'k,i-j+l,j + tbd-i-k,i jj+1)] (1 + 60)

k--1
+ fl(tbd-_k,ikj.j+l))(1 + 62)] (1 + 60)

= [(rb&_i.k+1si.j,j)(1 + 61) + ((SbLd-ik,ij+1,j)(1 + 63)

+ (t b ki-jj+1)(1 + 64))(1 + 62)] (1 + 60),

where 16i, i = 0,..., 4, are numbers less than or equal to the unit roundoff u.
Then by (4) we can write

d-i-k,ij,j -= (rbd i-k+l,i-jj)(1 + 02) + (sbdzik,ij+l,j)(1 + 03)

+ (tb:d-ik,i-jj+l)(1 + 03).

Iterating the previous argument for k = d, d - 1, ... , 1 and comparing the
final expression with (10), we deduce (12) and (13). El

By applying the previous result together with formula (7), which relates
backward and forward error, we can derive the following corollary on the
forward error of the de Casteljau algorithm.

Corollary 3. Suppose the hypotheses of Theorem 2 hold. Then the com-
puted value 3(r, s, t) = fi(p(r, s, t)) given by the de Casteljau algorithm satis-
fies

jp(r, s, t) - P(r, s, t)I • 73dCB(p(r, s, t)), (14)

where B is the Bernstein basis.

A modified Bernstein-B~zier representation of the polynomial p of (10)
was considered in [8],

d i

p(r, s, t) = E Cd-i,_jjrd-isi-jtj, (15)
i=O j=O

where the new coefficients are related with those of (10) by

Cd-i,i-j,j 0<j,i<d.
S(d - i)!(i - j)!j!b-

The following algorithm (which will be called the VS algorithm) was in-
troduced in [8] by Schumaker and Volk to evaluate a polynomial p in the
modified Bernstein-B6zier form (15). In contrast with de Casteljau algorithm,
this algorithm is expressed in terms of nested multiplications. This version of
the algorithm will use the quotients r/t or s/t, assuming that t is bigger than
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r and s, in order to avoid divisions by zero or by near-zero values. If r or s is

the biggest, it is recommended to adapt the algorithm appropriately.

VS algorithm

A := Cd,o,o

for i = 1 to d
B Cd-ii,0

for j = 1 to i
B := B. (sit) + Cd-i,i-j,j

end j
A:= A. (r/t) + B

end i
p(r,s,t) = A. td.

The previous algorithm requires (d2 + 5d)/2 multiplications and two di-
visions, and so is significantly faster than the de Casteljau algorithm. A
backward error analysis of the VS algorithm is performed in the following
result.

Theorem 4. Consider the VS algorithm in (15), and assume that 4du < 1.

Then the computed value fi(x) = fi(p(x)) satisfies

d i

P(x) = E E Cd-i,jj,jrd-isi-iti, (16)
i=0 j=0

where
Ici,j,k - Ci,j,kl < 74d. (17)

ICij,kl

Proof: The VS algorithm consists of a Horner type algorithm which calculates

Sand a last step which multiplies by td. From (15) we can write

p(r, s, t) d i

i=0 j=0

with fd-i,,- -= `I-aii . Since by (1) fl(r/t) = (r/t)(1 + 01) and fl(s/t) =

(s/t)(1 + 01), we can apply Theorem 3.1 of [7] to the Horner type part of the
VS-algorithm, and get

d i

f t -P Z 1tfd-ii-j,jd-isi-t

i=0 5=0

where

fd-i,i-j,j = fd-i,i-j,j(1 + 03d+1). (18)
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Finally, in the last step we have to multiply by td, and then by apply-
ing d - 1 times (1), we can obtain (16) with 6d-i,i-jj = fl(tdld-i,-jj)
td1d-i,i-j,j(1 + Od-1). Thus by (18) and (3)

d-i,i-j~j -= tdfd-i,i-j,j(l + 03d+l)(1 + Od-1) = tdfd-i,i-j,j(1 + 04d)

= Cd-i,i-j,j(1 + 04d). El

As a consequence of Theorem 4, and applying again formula (7), we can
perform a forward error analysis of the VS algorithm:

Corollary 5. Under the assumptions of Theorem 4, the computed value
(r, s, t) = fl(p(r, s, t)) of the VS algorithm satisfies

Ip(r, s, t) - P(r, s, t) I ! 4dCA (p(r, s, t)), (19)

where D is the basis used in the modified Bernstein-B1zier representation.

Although in Computer Aided Geometric Design, a bivariate polynomial
is usually stored in its Bernstein Bdzier form (10) (very close to the modified
Bernstein-B~zier representation (15)) we shall compare our error bounds with
those obtained by evaluating the polynomial in Taylor form by the bivariate
Homer algorithm. Given the triangle T and the polynomial p of total degree
d defined on T, let u = x - xj, v = y - yl, where (xi,yI) are the cartesian
coordinates of a point of T. The Taylor form of p is given by

d d-i

p(u, v) = E aijuvi. (20)
i=0 j=0

Bivariate Horner algorithm

p := ao,d

for i = 1 to d
A := ai,d-i

for j = 1 to i
A := A. u + ai-j,d-i

end j
end i
p = A. v + A.

We observe that the bivariate Horner algorithm requires (d2 + 3d)/2 mul-
tiplications.

The following result, which is a consequence of Corollary 3.2 of [7] for the
backward error bound and of formula (7) of the present paper for the forward
error bound, provides backward and forward error bounds of the bivariate
Horner algorithm.
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Theorem 6. Consider the bivariate Horner algorithm in (20), and assume
that (2d + 1)u < 1. Then the computed value P(u, v) = fi(p(u, v)) satisfies

d d-i

3(u, v) = Y Z aijuiv', (21)
i=0 j=O

where
Idi,j,k - ai,j,kl < "Y2d+I, (22)Ila ,i,jkl I

and satisfies

Ip(u, v) - A(u, v)j < Y2d+lCM(p(U, V)). (23)

§4. Conclusions

As mentioned, in the context of Computer Aided Geometric Design, polyno-
mials are usually stored in the Bernstein-B6zier form (10), which is used by
the de Casteljau algorithm. Let us observe that the coefficients of the modified
Bernstein-B~zier form (15) used by the VS algorithm are related with those
of (10) by

Cd-i'i-j'J= d l bd-ii-j,j, 0 < j, i < d. (24)
(d - i)! (i - !j

The conversion from the Bernstein-B~zier form into the modified Bernstein-
B6zier form can be done in (d2 +3d-4)/2 multiplications. In [8] the algorithm
composed of the conversion from the Bernstein-B~zier form into the modified
Bernstein-B6zier form followed by the VS algorithm was called the VSC al-
gorithm. The number of multiplications and divisions required by the VSC
algorithm is d2 + 4d.

We have seen that the VS algorithm is considerably more efficient than the
de Casteljau algorithm. On the other hand, the bivariate Horner algorithm is
also very efficient and has the lowest backward error bound, as one can deduce
from the results in the previous section. However the behaviour with respect
to the forward errors is different as we shall now show.

Given the bivariate Bernstein basis B defined on a triangle (see (11)),
since the barycentric coordinates satisfy r + s + t = 1 we can change the
variables in the form (r, s,t) = (u, v, 1 - u - v) and obtain the following
expression of the functions in B:

Bdu)v= ( id)ui 1_(l u--v)d-i-j, u,v C [0,1],

where

ilj := (d - i-j)!i!j!'
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With the same change of variables, the functions of the basis B (used in
the modified Bernstein form) can be written as

Z'j (u,v)=uiv'(1--u-v)d-i-, u, v E [0, 1].

Thus, these functions are related with those of B by

Bý(v j) (i.) j(U, V).

We see that the basis functions of B are obtained from those of B by a positive
scaling. Then, using the condition number of (5), it is easy to prove that

C9(p(u,v)) = CB(p(u,v)), Vp, Vu, v E [0,1]. (25)

On the other hand, the Taylor form uses the power basis M formed by
the functions uivi, 0 < i < d, 0 < i < d - i, u, v E [0, 1]. By formula (100) of
[2], the functions of the power basis M can be expressed as

= f-j n-k ( k)I -j= d)-E ki,
k=i l=j Gi~j

Since the coefficients are positive and the basis functions are nonnegative, we
can deduce from Lemma 1 that CB(p(u, v)) • CM(p(u, v)). Therefore, by
(25), we conclude for every polynomial p(u, v),

C•(p(u,v)) = CB(p(u,v)) _ CM(p(u,v)), u,v C [0,1]. (26)

In consequence, although the bivariate Horner algorithm provided lower back-
ward error bounds than de Casteljau and VS algorithms, formula (26) shows
that these algorithms use better conditioned bases, and this fact reduces their
corresponding forward error bounds.

In conclusion, the VS algorithm has more advantages than de Casteljau
or Horner algorithms in this context due to the following properties. First, it
uses a basis very close to the Bernstein basis, which is more appropriate in the
field of Computer Aided Geometric Design than the power basis. Secondly,
the bases used by de Casteljau algorithm and the VS algorithm are also better
conditioned than the power basis in the considered domain, this last property
being convenient from the point of view of forward error analysis. Finally, the
VS algorithm has a higher efficiency than the de Casteljau algorithm.
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